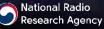

Global ICT Standards Conference 2025

Quantum Innovation and Standardization Pathway

Development of China's Quantum Communication Network Industry and Standardization


Dr. Minghan Li **Deputy Chief Engineer** CAS Quantum Network Co. Ltd.

ICT Standards and Intellectual Property: Al for All

<u>Index</u>

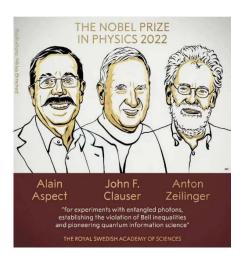
01 Background

102 Introduction of China's quantum communication network

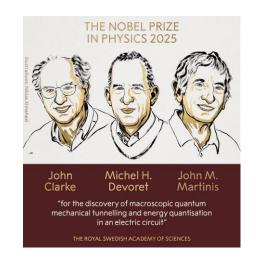
03 Development of standardization

Abstract

Main content of this presentation

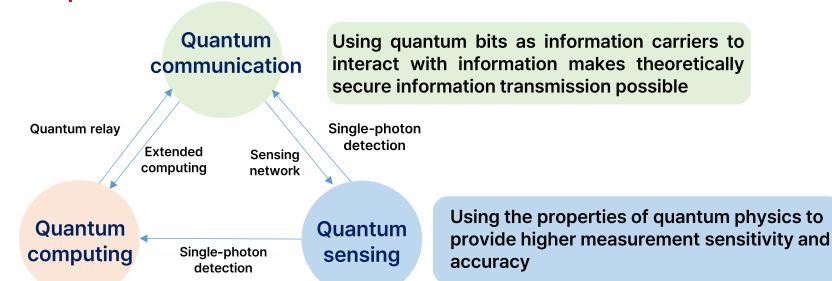

Development of China's Quantum Communication Network Industry and Standardization

- This presentation introduces the recent progress of quantum communication networks in China, including the network topology and the performance
- The standard development related to quantum technologies will also be introduced, mainly focusing on the activities in ITU, ISO and IEC


The quantum information era is coming

The Nobel Prize in Physics 2022 was awarded to the field of <u>quantum information science</u>, for "their achievements have paved the way for new technologies based on quantum information, including <u>quantum computers</u>, <u>quantum networks</u> and <u>quantum communications</u>"

The Nobel Prize in Physics 2025 was awarded to the field of quantum mechanics, for "the discovery of macroscopic quantum mechanical tunnelling and energy quantisation in an electric circuit". Lays the scientific foundation for superconducting quantum computing



The ultimate goal: Quantum Internet

- The quantum internet refers to a global system that transmits, processes, and stores quantum information by interconnecting various quantum information processors or sensors.
- The first stage of the quantum internet is the quantum key distribution network, which will eventually develop into a full quantum network that uses quantum bits and quantum entanglement as basic resources.

Three important components of the quantum internet

Using principles such as quantum superposition and interference to simulate a series of currently difficult problems.

Evolution stages of quantum internet

Applications corresponding to different stages

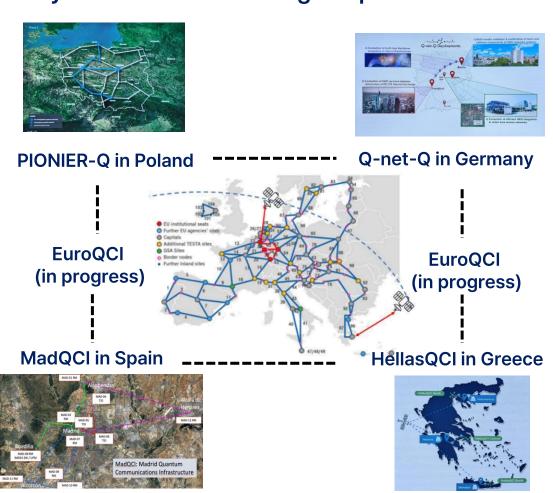
Cross-field ecological cultivation Leader election, faste byzantine Quantum computing Intercontinental entanglement FUNCTIONALITY Few qubit fault tolerant distribution network Blind quantum computing, simple leader Quantum memory election and agreement protocols. **Quantum storage network Entanglement generation Entanglement distribution network** Prepare and measure **Preparation-Measurement Trusted repeater** quantum network

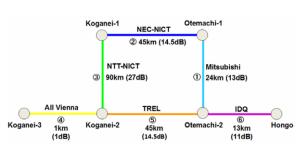
Examples of known applications

Strategic Research and Industry Agenda 2030¹

Quantum Internet Blueprint by U.S. DOE in 2020²

Five milestones in the quantum internet


1. Strategic-Reseach-and-Industry-Agenda-2030.pdf (qt.eu)


Stage of quantum network

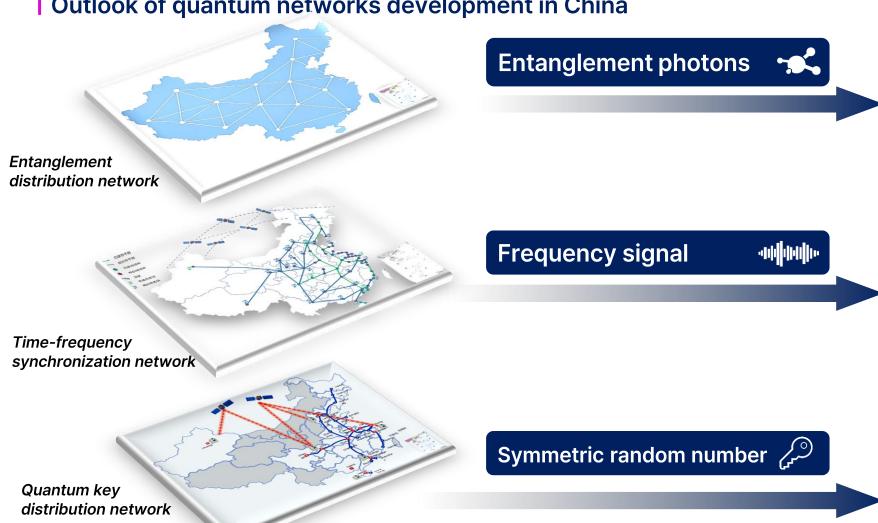
 ${\bf 2.\ QuantumWkshpRpt20FINAL_Nav_0.pdf\ (energy.gov)}$

Many countries are working on quantum communication networks

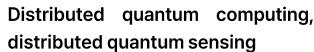
Quantum network in Japan (2011)

Quantum network in Korea (2022)

Quantum network in UK (2019)

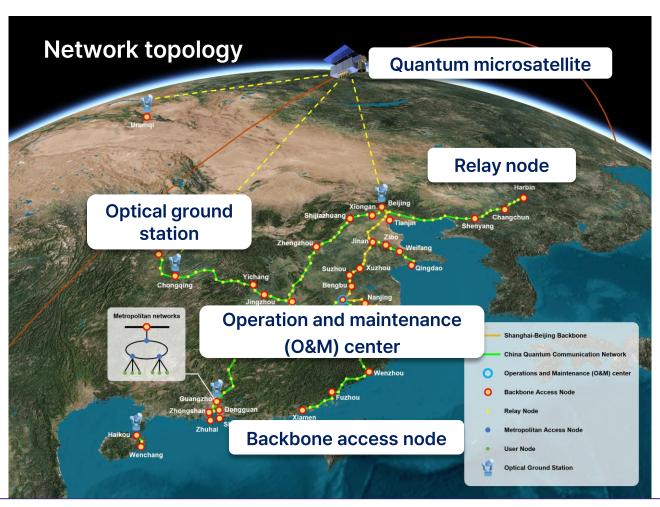

Quantum corridor project in America (2023)

Development of China's Quantum Communication Network Industry and Standardization


01. Background

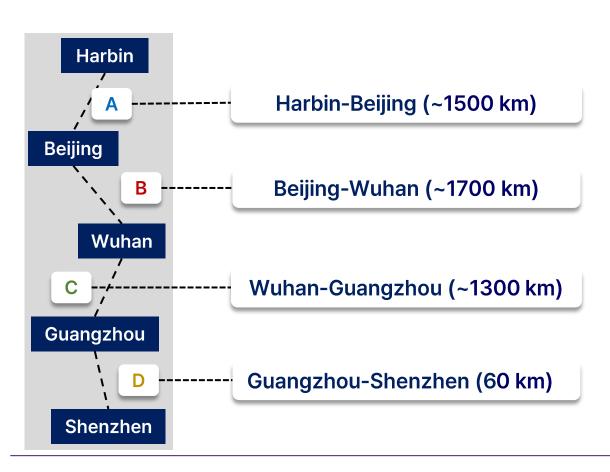
Application scenarios

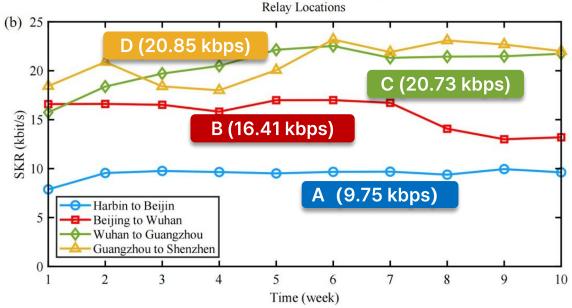
Earthquake monitoring, Time synchronization, loT



Data center, ICT, blockchain

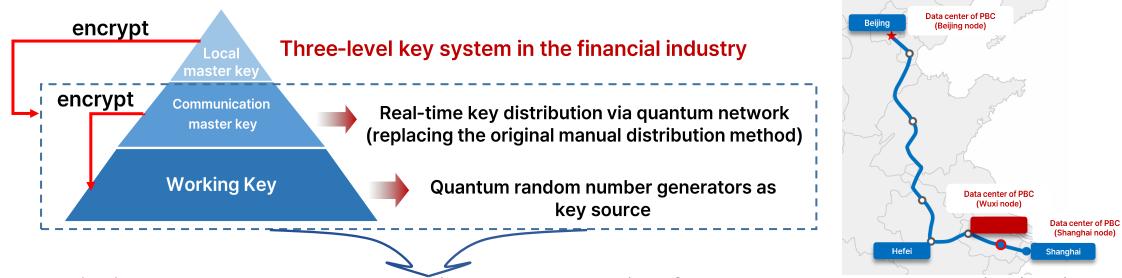
Overview of China Quantum Communication Network (CN-QCN)¹


• Remarkable parameters:


- Total optical fiber length approximately 10,103 km
- 145 backbone nodes
 (41 backbone access node + 104 relay nodes)
- Cover 17 provinces and 80 cities
- Deployed 6 ground stations linked with Jinan-1 quantum microsatellite
- Achieve multi-type QKD hybrid networking

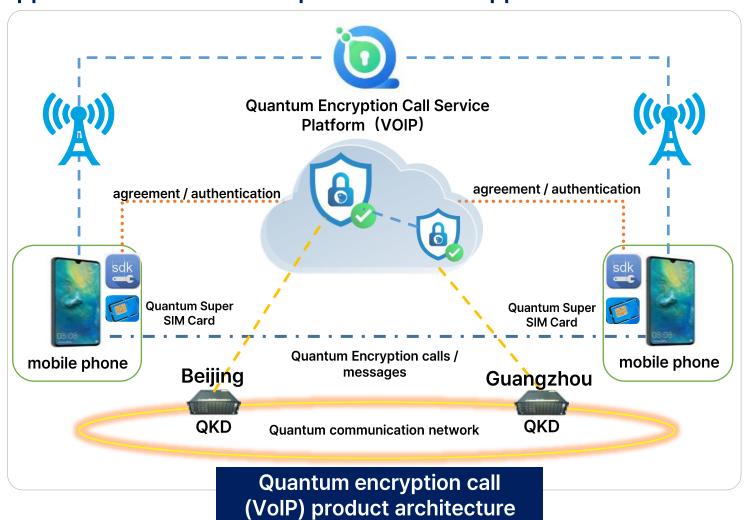
^{1.} Hao-Ze Chen, et al., Implementation of carrier grade quantum communication networks over 10000 km, NPJ Quantum Information, 2025 11:137

- Secure key rate (SKR) performance analysis of CN-QCN
- Harbin-Shenzhen: Northernmost point to the southernmost point in mainland, total optical fiber length is about 4,660 km as the longest routine, being divided into four segment (A to D):


- The end-to-end SKR is determined by the minimum SKR among all km-links between adjacent nodes
- Different user needs in different regions have to taken consideration when deploying the networks

Applications: Provide services for many banks based on systematic quantum key

Key generation, distribution and update between bank clearing data center nodes based on


quantum technologies

- Security improvement: Root key security guaranteed, high-frequency large-scale key distribution enabled
- Cost reduction: All sub-service systems can share the common quantum-based security infrastructure via flexible APIs, needless for separate development

|Applications: Commercial quantum secure applications for mobile telecom terminals

The number of user has exceeded 4,000,000

Components

- Quantum super SIM card
 Provided by China Mobile, is used to store quantum keys
- Quantum Communication network Based on CN-QCN built and operated by CAS Quantum Network Co., Ltd.

| Standard development related to quantum communication networks

QKD

Published 13 standards

- > QKD use cases
- > Component
- > Terminology
- > Interface
- > ...

2008~2019

QKDN

Developed 39 standards

- > Architecture
- > Functional requirement
- > Security management
- > Interface Protocol
- >...

2019~

QIT

IEC and ISO jointly established the Joint Technical Committee on Quantum Technologies, namely IEC/ISO JTC 3, focusing on QITs in January 11, 2024

2024~

Standard activity of quantum technologies in ITU

Through FG-QIT4N, exporting standardization results to ITU-T Signalling requirements... (SG 11), Future Network Standards **Group (SG 13) and Security Standards Group (SG 17)** FG-QIT4N **SG 11** SG 13 **SG 17** 5 standards 26 standards 8 standards **QKDN** protocol QKDN architecture **QKDN and QRNG** and signalling and function security 39 standards published

Actively participated in SG 11, SG 13 and SG 17

■ Chinese experts have actively participated in 29 standards in these study groups, in which 5 standards in SG 11, 20 standards in SG 13, and 4 standards in SG 17, including frameworks of QKD network and security, and is developing standards such as QKD network interconnection and interface protocols

Actively participated in ISO and IEC

Established in January 11, 2024, focusing on standardization of quantum technologies

IEC/ISO JTC 3 First Plenary Session (May, 2024, Seoul)

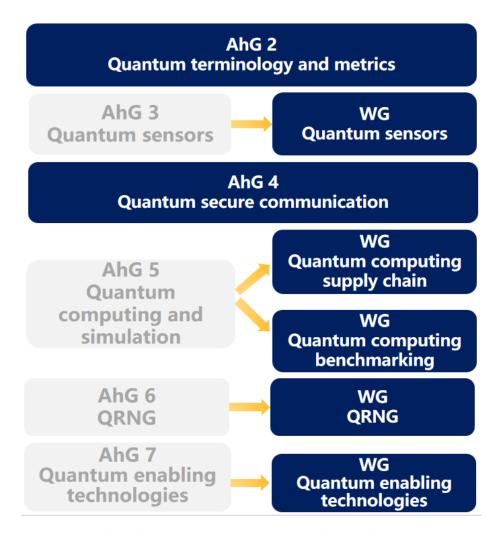
 Set up six ad hoc groups, covering terminology, quantum random number generator, etc

IEC/ISO JTC 3 Second Plenary Session (October, 2024, Edinburgh)

Explicitly include the field of QKD in the scope of work of ahG 4

IEC/ISO JTC 3 Third plenary Session (May, 2025, Tokyo)

 Approved to establish 5 WGs, Chinese expert serve as the convenor of the WG 13 QRNG



Actively participated in ISO and IEC

After the third plenary meeting (May, 2025) of IEC/ISO JTC 3

- According to the resolutions, there are 2 ad hoc groups and 5 working groups, where the Chinese expert served as the convenor of WG 13 QRNG
- The structure of JTC 3 reflects the integration of quantum technology with different technical fields and demonstrates the strong potential of future quantum fusion networks

Evolution of ad hoc groups and wgs in IEC/ISO JTC 3

03. About us and call for cooperation

- Founded jointly by the Chinese Academy of Sciences Holdings Co., Ltd., the Univers ity of Science and Technology of China (USTC) in 2016.
- Relying on the technical advantages of Academician Jian-Wei Pan's team.
- Provide services of quantum technology and ICT, including quantum cryptography, application, quantum-safe cloud service, quantum enhanced data storage, etc.

https://qtict.com/english

Quantum-safe cloud service

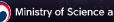
Quantum-safe push-to-talk

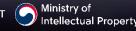
Quantum-safe gateway

Quantum-secured lease line

Facing the next-generation quantum internet, which call for the cooperation in the global interested parties in varies of relevant industrialization

Global ICT Standards Conference 2025


- Thank you -


Minghan Li, Deputy Chief Engineer, CAS Quantum Network Co. Ltd.

liminghan@qtict.com

ICT Standards and Intellectual Property: Al for All

